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Abstract— Metamodeling has become a common approach
to replace costly and time-consuming physical experiments or
computer experiments (e.g., numerical simulation, training of
AI models) by an easy-to-evaluate metamodel, which is trained
on samples of the experiment. Since the choice of sample points
significantly impacts model accuracy, these are in many cases
determined using adaptive sampling methods. In addition, the
cost of conducting an experiment often depends decisively on
the choice of its parameters. However, only few strategies for
selecting the sample points have been proposed, that take into
account parameter-dependent costs. In this work, we introduce
a novel Voronoi-based cost-aware adaptive sampling algorithm
for global metamodeling that is independent of the choice of
sampling strategy and metamodel. The method is evaluated on
a variety of randomly generated black-box and cost functions,
where it has shown to vastly outperform existing sampling
strategies.

I. INTRODUCTION

In many engineering applications, physical experiments
(e.g., crash test [1], wind tunnel [2]), or computer experi-
ments experiments (e.g., numerical simulations [3], training
of AI models [4]) need to be carried out to gain insight into
the process, understand the effects of the parameters in the
design space on the system output, or to identify optimal
parameters. These experiments are often expensive or time-
consuming, making it impossible to evaluate a large number
of parameter combinations in design space [5]. Global meta-
modeling tries to reduce the experimental costs by replacing
the experiment with an easy-to-evaluate metamodel, that
approximates the behavior of the original experiment based
on a limited number of samples [6], [7].

However, the accuracy of the model depends decisively
on the choice of points in the design space [8], [9]. Design
of Experiments (DoE) generate points in the design space
in such a way that the effects of parameter changes on
the quantity to be modeled are reflected as precisely as
possible [10].

One-shot approaches like fractional designs, latin hyper-
cubes, and orthogonal arrays [7], [11], [12] try to achieve this
by evenly covering the design space [11]. The advantage of
these methods is their simplicity. Since, however, only infor-
mation known before the first experiment can be considered
for the choice of sample points [12], too many or too few
samples might be taken [13], and it is not clear what needs
to be done if the desired model accuracy after sampling is
not sufficient [10].
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In many cases, one-shot approaches are used to create a
few points (initial design) as a basis for more sophisticated
adaptive design approaches [10], [11], [14], which determine
one or more new points per iteration based on the already
existing samples. Thus, they also allow for a termination
criterion (e.g., reaching a desired estimated model accuracy)
and hence, a variable number of samples adapted to the
specific setting.

All adaptive sampling methods (also called sequential
designs [11] or active learning [12]) need to perform a trade-
off between exploration and exploitation [7], [13], where
exploitation increases the local model accuracy and explo-
ration ensures that no relevant regions of the design space
are omitted. Numerous distance-, variance-, gradient-, and
cross-validation-based adaptive exploration and exploitation
strategies have been researched [6].

Some of these methods construct Voronoi cells based on
the existing samples and leverage the properties of Voronoi
diagrams to select the next sample point. For instance,
the vertices of the Voronoi cells are used to discretize a
continuous objective function and thus serve as candidates
for the next sample point [15]. In the CV-Voronoi approach
[13], leave-one-out cross-validation is applied to existing
samples where the sample furthest from the model is used
for choosing the next sample. A Voronoi tessellation is
constructed on all existing samples and the next sample is
sequentially chosen as the furthest vertex of the associated
Voronoi cell. The LOLA-Voronoi algorithm [11] estimates
the local nonlinearity of the unknown function at each sample
point. Just like in the CV-Voronoi method, the next sample
point is then chosen to be the furthest vertex of the Voronoi
cell corresponding to the largest estimated nonlinearity.
The advantage of this method is its independence from
the applied metamodel. In general, the performance of the
respective algorithm depends on the characteristics of the
black-box function [6]. However, it has been shown that CV-
Voronoi outperforms LOLA-Voronoi for various black-box
functions [13].

In many applications, sampling costs depend on the spe-
cific parameter combinations. Accordingly, in addition to the
trade-off between exploration and exploitation, cost-aware
adaptive sampling algorithms must trade off between two
further competing goals: maximizing information about the
black-box function and minimizing sampling costs.

For example, in the ROBDEKON project [16], expensive
and time-consuming sampling of contaminated sites with
subsequent laboratory evaluation have to be carried out in
order to reconstruct the pollutant distribution in the soil. To
ensure that the pollutants can be removed precisely, an accu-
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rate metamodel is required. In addition, sample locations that
are difficult to access (e.g., buildings, vegetation, slopes) are
costly and time consuming to sample and should therefore
be avoided.

For computer experiments, the simulation time and the
energy demand represent costs that depend on the parame-
ters of the experiment (e.g., varying regularization, learn-
ing rates, number of iterations or layer sizes in neural
networks [4], [17]).

To the best of our knowledge, there is only one cost-aware
sampling method for global metamodeling and few in the
context of global optimization. Crombeq et al. consider the
parameter-dependent cost of choosing the next sample point
by dividing various variance- and distance-based criteria by
the cost function [2]. Here, the cost function can be inter-
preted as the parameter-dependent scaling of the criterion.
The same approach is also used in the context of Bayes
Opimization (BO). There, the acquisition function Expected
Improvement (EI) is divided by the cost function to obtain
the Expected Improvement per unit (EIpu). For their method
Cost Apportioned BO (CArBO), Lee et al. extend EIpu
by cost-cooling, which decreases the influence of the cost
function with the number of samples [4]. By dividing by
the cost function, cost often has too great of an impact on
the choice of the next sample point [2] and the criterion
becomes numerically unstable for costs close to zero due to
the inversion of the cost function.

All adaptive sampling methods are started with an initial
design [7]. However, with conventional space-filling meth-
ods, some of the initial points may fall into expensive regions
of the design space. To prevent this, Lee et al. propose a
space-filling cost-effective initial design [4]. For this, the
design space is discretized, the cost function is evaluated
at all discrete points, and the results are stored in a data set.
In each iteration of the algorithm, the most expensive point
and the point closest to the existing sample points are then
alternately removed from the data set until only one point
remains. This is then used as the next sample point. The
procedure is repeated while the accumulated sampling cost
is below a given budget. In the first iteration the cheapest of
the discrete points is used as next sample point, since there
is no existing sample points yet.

This paper proposes a Voronoi-based cost-aware adaptive
adaptive sampling algorithm for global metamodeling of
expensive-to-evaluate black-box functions with parameter-
dependent cost functions. The algorithm is independent of
the applied metamodel or cell selection criterion and can
thus be used for both generation of a cost-aware initial
design using a space-filling criterion and cost-aware adaptive
sampling using an exploitation-based criterion. Unlike the
literature methods, the algorithm can handle any positive
valued cost function including zero. We show that our
method yields higher model accuracy for a given budget than
the cost-effective initial design of CArBO and the adaptive
design CV-Voronoi.

The paper is structured as follows: Sec. II provides a
formal description of the considered problem. The general
procedure of global metamodeling is presented in Sec. III.

Sec. IV introduces our novel cost-aware adaptive sampling
algorithm. Finally, we present our evaluation in Sec. V and
conclusions in Sec. VI.

II. PROBLEM FORMULATION

An (unknown) expensive-to-evaluate black-box function
f : Rn → R is to be approximated by a metamodel f̂ within
the bounded set X ⊂ Rn based on evaluations (samples)
yl ∈ R of f at points xl ∈ X for 1 ≤ l ≤ m, where m is
the number of existing samples, n is the number of design
parameters, and X is the design space. The samples

yl = f(xl) (1)

are given by the value of the true function f(x) at points
xl. Furthermore, the sampling costs depend on the location
x in the design space X and are given by the positive valued
cost function cl : R

n → R+
0 . For a series of m sequential

samples, the accumulated cost

ccum =

m∑
l=1

cl(xl) (2)

can be calculated as the sum of costs per iteration.
The goal is to sequentially determine the sample points

xl such that, for a given budget cmax, the global error
between the metamodel f̂ and the black-box function f
becomes minimal w.r.t. a given metric. Accordingly, the
budget represents the upper bound for the accumulated costs
ccum ≤ cmax.

III. ADAPTIVE SAMPLING
FOR GLOBAL METAMODELING

Adaptive sampling methods determine the next sample
point based on the existing samples or metamodel. Since
initially no information about the black-box function is
available, a space-filling initial design D0 is created to
evenly cover the design space X . Then, until a termination
criterion (e.g., maximum number of iterations, estimated
model accuracy, available budget) is met, the following steps
are repeated:

• the metamodel f̂ is updated with the current data set D
• the next sample point xm+1 is determined based on

some criterion
• the black-box function f is evaluated at xm+1

• the new data (xm+1, ym+1) is added to the data set D.

An illustration of the described procedure is shown in Fig. 1.
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Fig. 1: General procedure for metamodeling using adaptive sampling,
starting with a space-filling initial design.

IV. COST-AWARE VORONOI SAMPLING (CAV)

CAV is an adaptive sampling algorithm as illustrated in
Fig. 1. It is warm-started with a non-empty initial data set
D0 = {(xl, yl)}m0

l=1, where m0 is the number of initial
samples. Accordingly, the cumulative costs ccum = c0 are
initialized with the initial costs c0 =

∑m0

l=1 cl(xl) of the
samples in D0. In each iteration i, a Voronoi tessellation
(bounded on the design space X ) is constructed on the
current data set Di = {(xl, yl)}ml=1 containing the m existing
samples. The Voronoi tessellation can either be computed
exactly or, especially for higher dimensional design spaces,
be approximated using a Monte Carlo approach [12]. This
results in vi and F i containing volumes and furthest corners
of each Voronoi cell j in iteration i. Note that the number
of existing samples m = m0 + i equals the number of
initial samples m0 plus the iteration i. Using a cell selection
criterion

Ki : {1, . . . ,m} → R (3)

a real value is assigned to each cell j based on the existing
samples, Voronoi diagram, or metamodel. The cell

j∗ = argmax
j

Ki(j) (4)

that has been assigned the highest value is then selected.
Conventional Voronoi-based adaptive sampling methods

(e.g., CV-, LOLA-Voronoi) use the vertex xF = F [j∗] of
the selected cell farthest from the associated sample point s
as the next sample point. CAV, on the other hand, uses xF
as the starting point for a local optimization

minimize
x∈X

c(x) (5)

subject to ||x− xF|| < a · ||s− xF||
of the cost function within a hyper-ball around xF, whose
radius can be set with a. The optimization result x∗ is
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Fig. 2: Voronoi cells (black lines) and optimization region (blue circle) on
top of the contour plot of the cost function. The shaded cell was selected by
the cell selection criterion Ki. s, xF and x∗ indicate the according sample
point, furthest vertex and next sample point.

then used as the next sample point xm+1. As the number
of samples increases, the expected distance between sample
points decreases, so the optimization region also becomes
smaller. Consequently, the influence of the cost function
on the choice of the next sample point decreases with
the distance between the samples and thus, on average,
with the number of samples. This behavior is similar to
the concept of cost-cooling, which is used for example in
CArBO [4]. We found a = 0.5 to produce good results on
150 randomly generated black-box and cost function pairs
and therefore suggest to use this value for application of
the algorithm. Refer to Alg. 1 for the pseudocode of the
described algorithm.

Algorithm 1 Cost-aware Voronoi Sampling (CAV)
1: Input: budget cmax, design space X , initial cost function c0,

initial data set D0 = {(xl, yl)}
m0
l=1

2: set ccum =
∑m0

l=1 c0(xl), i = 0, m = m0

3: while ccum ≤ cmax do
4: vi, F i ← Voronoi(Di), vi: volumes, F i: furthest vertices
5: select cell j∗ according to (4) using criterion Ki

6: compute next sample point xm+1 according to (5)
7: ym+1 ← f(xm+1)
8: Di+1 ← Di ∪ (xm+1, ym+1), ccum ← ccum + ci(xm+1)
9: update metamodel and costfunction

10: i← i+ 1, m← m+ 1
11: end while
12: Return: Di

Note that the proposed algorithm is independent of the
metamodel, as long as the criterion Ki is model independent.
The criterion Ki alone defines the dependencies on the meta-
model or the type of metamodel. Moreover, the algorithm
does not impose any condition on the cost function, except
that it must not take negative values (ci : Rn → R+

0 ). This
applies to both given cost functions and cost models that
are – in case of unknown cost functions – iteratively learned
during the sampling procedure.
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Fig. 3: First 25 samples generated by the cost-aware initial designs S-CAV
(crosses) and CeID (circles) on top of the contour plot of the cost function.

A. Space-filling Cost-aware Voronoi (S-CAV)

S-CAV is a special variant of CAV that is suitable for
creating space-filling initial designs. It obtains the space-
filling properties by using the hypervolume of the cell as
the cell selection criterion

Ki(j) = v[j] . (6)

This reduces the size of the largest Voronoi cell in each
iteration i, resulting in evenly distributed sample points in
the design space. At the same time, parameter-dependent
costs are taken into account by the local optimization in (5).
The algorithm can be initialized with any non-empty set of
sample points located in the design space. If a single initial
sample point is used, we recommend to use the minimum of
the initial cost function c0.

B. Cross-validation Cost-aware Voronoi (CV-CAV)

CV-CAV is a variant of CAV, in which the cross-validation
error of CV-Voronoi is used as cell selection criterion

Ki(j) =
∣∣∣f̂−j(sj)− f̂(sj)

∣∣∣ , (7)

where sj is the sample point associated with the jth cell, f̂
is the metamodel trained on the current data set Di, and f̂−j

is the metamodel trained on the current data set leaving out
the sample of the jth Voronoi cell Di \ sj .

V. EVALUATION

In the following section, the variants S-CAV and CV-
CAV of our proposed algorithm CAV are evaluated. First,
the experimental setup is described in Sec. V-A. Then, S-
CAV is compared against the cost-effective initial design
of CArBO [4], which we will refer to as CeID, and latin
hypercube design (LHD) in Sec. V-B. The comparison of
the cost-aware adaptive designs is presented in Sec. V-C.

A. Experimental Setup

To evaluate the algorithms, they were applied to
N runs = 100 randomly generated black-box and cost func-
tion pairs fq , cq , q ∈ {1, . . . , N runs} on the design space
X = [0, 1]× [0, 1]. The cost functions were assumed to be
known and were static, thus invariant w.r.t. the iteration of the
algorithms. Each of the black-box functions was modeled as
sum of five Gaussian distributions. The covariance matrices
of the individual Gaussian distributions were generated by
rotating a diagonal matrix with random entries between
[0.005, 0.05] by a random angle using a rotation matrix.
This resulted in smooth distributions that could already be
well approximated with 100 samples. The cost functions
were generated in the same way as sum of 30 Gaussian
distributions. However, the entries of the diagonal matrices
were chosen between [0.001, 0.02] and an offset between
(0, 1] was added to account for constant costs. These more
complex cost functions should make it difficult for algorithms
to take them into account when choosing sample points.

Two measures were used to evaluate the algorithms.
1) Normalized Root-mean-square Error (NRMSE): Model

accuracy was determined using the NRMSE

NRMSE =

√
1

N eval

∑N eval

k=1

(
f̂(xk)− f(xk)

)2

ymax − ymin
, (8)

where ymax = max
k

f(xk) ,

and ymin = min
k

f(xk)

between the black-box function and the metamodel on a
100 × 100 regular grid (N eval = 104) and was evaluated
over the number of samples and the normalized budget.
The normalized budget provides insight into the metamodel
accuracy that can be achieved for a given budget cmax. For
each cost function cq the budget

cmax,q = M · E{cq(x)} (9)

was defined as a fixed number of samples M (here M = 100)
times the expected cost, given the cost function cq on the
design space. Hence, M random samples could be taken in
average. The normalized cost was computed by dividing the
budgets cmax,q corresponding to the individual cost functions
cq by the maximal budget max

q
cmax,q .

2) Normalized Cost per Sample (NCPS): For a cost
function c and a sample point x, the cost c(x) is obtained.
c(x) is normalized by dividing it by the expected cost, which
corresponds to the mean value of the cost function c on the
design space. NCPS of 1.0 thus corresponds to the expected
normalized cost of a random sample point. Normalization
allows NCPS to be compared across multiple cost functions.

As metamodel a Gaussian Process [18] with a squared
exponential kernel was used. In addition, we assumed the
black-box functions to be deterministic.

Note that in Fig. 4 and Fig. 5 NRMSE and NCPS denote
the mean values of NRMSE and NCPS over the N runs runs.
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Fig. 4: Mean NRMSE and mean NCPS of the initial designs S-CAV, CeID and LHD over the number of samples and budget based on 100 randomly
generated pairs of cost and black-box functions (see V-A).
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Fig. 5: Mean NRMSE and mean NCPS of LHD | CVV, S-CAV | CVV, and S-CAV | CV-CAV using an initial design size of 20 samples over the number
of samples and budget based on 100 randomly generated pairs of cost and black-box functions (see V-A).

B. Cost-aware Initial Designs

In this section, the performance of S-CAV is compared
against CeID and LHD. Fig. 4a shows that S-CAV and CeID
start with comparable NRMSE up to about 16 samples,
and LHD is slightly below that. With increasing number of
samples, S-CAV achieves the best model accuracy, followed
by LHD. CeID performs significantly worse than S-CAV and
LHD. In Fig. 4b NCPS takes values close to 1.0 on average
for LHD, since the samples are evenly distributed without
cost considerations. NCPS of CeID remains strictly below
the other methods and also below 0.5. This is because CeID
strongly prefers low-cost regions (see Fig. 3). The resulting
uneven distribution of sample points is also the reason for its
large NRMSE compared to the other approaches in Fig. 4a.
S-CAV starts with low NCPS that increase with the number
of samples but remain below those of LHD. This is because
the radius of the optimization region to account for the cost
(and thus the impact of the cost function on the choice of
the next sample point) depends on the spacing of the sample
points, which decreases with the number of samples. Due
to the low NCPS, CeID can generate more samples than S-
CAV and LHD with the same budget (compare Fig. 4c). The
uneven distribution of sample points of CeID results in the
NRMSE being below that of LHD only for small budgets
and above it for large budgets. S-CAV distinctly achieves

the smallest NRMSE.

C. Cost-aware Adaptive Designs
To compare the adaptive sampling methods, we introduce

the notation A | B, where A denotes the applied initial design
and B denotes the adaptive design used. Each initial design
included 20 samples. A Gaussian process with a squared
exponential kernel was used as metamodel to compute the
cross-validation error for CV Voronoi.

In Fig. 5, it can be seen that S-CAV | CV-CAV has much
lower NCPS (see Fig. 5b) than the comparison methods with
only slightly larger NRMSE (see Fig. 5a). The change from
a cost-aware initial design to an adaptive design without
cost consideration results in a rapid increase in NCPS for S-
CAV | CVV. The NCPS of CV-CAV are much lower than the
NCPS of the comparison methods despite the optimization
region getting smaller with the number of samples. Anal-
ogous to the NCPS, the effect of S-CAV | CV-CAV can
also be seen in Fig. 5c. For small budgets, the cost-aware
algorithms achieve a significantly lower NRMSE. Only for
larger budgets, when CV-CAV also samples more expensive
points, the NRMSE converge. S-CAV | CV-CAV provides
the best model accuracy for a given budget, followed by S-
CAV | CVV and LHD | CVV. Fig. 6 shows the initial and
adaptive samples of S-CAV | CV-CAV for one pair of cost
function (see Fig. 6a) and black-box function (see Fig. 6b).
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(b) Sample points of S-CAV | CV-CAV on the black-box function

Fig. 6: Initial design of 20 samples (crosses) and adaptive design of 30
samples (dots) of S-CAV | CV-CAV depicted on contour plots of a sample
pair of cost and black-box functions.

VI. CONCLUSION

This paper introduces CAV, a cost-aware adaptive sam-
pling algorithm for expensive-to-evaluate black-box func-
tions. Based on a Voronoi tessellation of the existing sample
points, a cell of interest is selected using a cell selection
criterion. The vertex farthest from the associated sample
point is then used as the starting point for a local optimization
of the cost function. Since the radius of the optimization
region depends on the distance between the sample point and
the most distant vertex, it decreases with increasing number
of samples. This also reduces the influence of the cost
function on the choice of the sample point (cost-cooling).
The space-filling variant S-CAV and the adaptive variant CV-
CAV of CAV were compared against the cost-effective initial
design of CArBO and CV-Voronoi. It has been shown that for
a given budget, the proposed algorithms result in a smaller

approximation error of the black-box function. S-CAV even
achieves a lower approximation error based on the number
of samples than the comparison methods. In future work,
CAV will be used for global optimization and learned cost
functions. In addition, the extension of the algorithm to
discrete and categorical inputs is planned.

REFERENCES

[1] M. Moustapha, B. Sudret et al., “Metamodeling for Crashworthi-
ness Design: Comparative Study of Kriging and Support Vector
Regression,” in Proceedings of the 2nd International Symposium on
Uncertainty Quantification and Stochastic Modeling, July 2014, p. 9.

[2] U. Choi, J. Kim et al., “Cost-Aware Adaptive Design of Experiment
with Nonstationary Surrogate Model for Wind Tunnel Testing,” Inter-
national Journal of Aeronautical and Space Sciences, vol. 21, no. 3,
pp. 670–680, Sep. 2020.

[3] T. Braconnier, M. Ferrier et al., “Towards an Adaptive POD/SVD
Surrogate Model for Aeronautic Design,” Computers & Fluids, vol. 40,
no. 1, pp. 195–209, Jan. 2011.

[4] E. H. Lee, V. Perrone et al., “Cost-aware Bayesian Optimization,”
arXiv:2003.10870 [cs, stat], Mar. 2020.

[5] H. Liu, Y.-S. Ong et al., “A Survey of Adaptive Sampling for Global
Metamodeling in Support of Simulation-based Complex Engineering
Design,” Structural and Multidisciplinary Optimization, vol. 57, no. 1,
pp. 393–416, Jan. 2018.

[6] J. N. Fuhg, A. Fau et al., “State-of-the-Art and Comparative Review of
Adaptive Sampling Methods for Kriging,” Archives of Computational
Methods in Engineering, vol. 28, no. 4, pp. 2689–2747, Jun. 2021.

[7] K. Crombecq, E. Laermans et al., “Efficient Space-filling and Non-
collapsing Sequential Design Strategies for Simulation-based Model-
ing,” European Journal of Operational Research, vol. 214, no. 3, pp.
683–696, Nov. 2011.

[8] A. L. Kaminsky, Y. Wang et al., “An Efficient Batch K-Fold Cross-
Validation Voronoi Adaptive Sampling Technique for Global Surrogate
Modeling,” Journal of Mechanical Design, pp. 1–14, May 2020.

[9] R. Jin, W. Chen et al., “On Sequential Sampling for Global Metamod-
eling in Engineering Design,” in Volume 2: 28th Design Automation
Conference, Montreal, Quebec, Canada, Jan. 2002.

[10] H.-L. Choi, J. Ahn et al., “Information-maximizing Adaptive Design
of Experiments for Wind Tunnel Testing,” in Engineering Optimization
2014, A. Araujo, Ed. CRC Press, Sep. 2014, pp. 329–334.

[11] K. Crombecq, D. Gorissen et al., “A Novel Hybrid Sequential Design
Strategy for Global Surrogate Modeling of Computer Experiments,”
SIAM Journal on Scientific Computing, vol. 33, no. 4, pp. 1948–1974,
Jan. 2011.

[12] K. Crombecq, I. Couckuyt et al., “Space-Filling Sequential Design
Strategies for Adaptive Surrogate Modelling,” in The First Interna-
tional Conference on Soft Computing Technology in Civil, Structural
and Environmental Engineering, Funchal, Madeira, Portugal, Jan.
2009.

[13] S. Xu, H. Liu et al., “A Robust Error-Pursuing Sequential Sampling
Approach for Global Metamodeling Based on Voronoi Diagram and
Cross Validation,” Journal of Mechanical Design, vol. 136, no. 7, p.
071009, Jul. 2014.

[14] A. Golzari, M. Haghighat Sefat et al., “Development of an Adaptive
Surrogate Model for Production Optimization,” Journal of Petroleum
Science and Engineering, vol. 133, pp. 677–688, Sep. 2015.

[15] J. Westermann, A. Zea et al., “Adaptive Sampling for Global Meta
Modeling Using a Gaussian Process Variance Measure,” in Proceed-
ings of the 2021 European Control Conference (ECC 2021), Virtual,
Jun. 2021.

[16] J. Petereit, J. Beyerer et al., “ROBDEKON: Robotic Systems for
Decontamination in Hazardous Environments,” in 2019 IEEE Inter-
national Symposium on Safety, Security, and Rescue Robotics (SSRR),
Sep. 2019.

[17] J. Snoek, H. Larochelle et al., “Practical Bayesian Optimization of
Machine Learning Algorithms,” in Proceedings of the 25th Interna-
tional Conference on Neural Information Processing Systems - Volume
2, Red Hook, NY, USA, 2012.

[18] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning, 3rd ed., ser. Adaptive Computation and Machine
Learning. Cambridge, Mass.: MIT Press, 2008.

459

Authorized licensed use limited to: KIT Library. Downloaded on November 15,2023 at 10:04:23 UTC from IEEE Xplore.  Restrictions apply. 


