
Continuing to Catch Up with State of the Art Continuous Integration

Pipelines in Palladio – The Experience Report Strikes Back

Lucas Domingo Alber
lucas.alber@student.kit.edu

Karlsruhe Institute of Technology

Nicolas Boltz
boltz@kit.edu

Karlsruhe Institute of Technology

Larissa Schmid
schmid@kit.edu

Karlsruhe Institute of Technology

Abstract

The Palladio organization comprises over 50 software
artifacts and is actively developed by over 32 mem-
bers. This research paper presents a case study on
the migration from Jenkins to GitHub Actions for au-
tomated builds in the development workflow for Pal-
ladio. The transition has yielded significant improve-
ments in continuous integration, review processes, and
deployment efficiency. The adoption of GitHub Ac-
tions’ modular and reusable workflows has further
optimized our build pipeline, resulting in enhanced
maintainability and reduced redundancy. Addition-
ally, by leveraging dependency analysis, we applied
the idea of incremental builds to the whole organi-
zation and automated the generation of build work-
flows, leading to improved resource utilization and an
average speed-up in build times of 11.7. This study
highlights the benefits of embracing GitHub Actions
and provides valuable insights for development teams
seeking to streamline their build processes.

1 Introduction

In today’s fast-paced software development landscape,
ensuring code quality, continuous integration, and
swift deployment has become crucial for teams seeking
to deliver reliable products to their users. Among the
various methodologies employed, we use nightly builds
in Palladio [1] to enable continuous testing and inte-
gration, allowing developers to identify and address
issues early in the development cycle. Employing au-
tomated build systems such as Jenkins 1 has been a
common approach to managing nightly builds. These
systems can be directly integrated with version con-
trol services such as GitHub using webhooks. How-
ever, this involves substantial maintenance overhead.

As the technology landscape continually evolves,
GitHub Actions 2 has emerged as an automation plat-
form, revolutionizing the way teams orchestrate their
development workflows. Recognizing the limitations

1https://www.jenkins.io/
2https://docs.github.com/en/actions

and management complexities associated with main-
taining a Jenkins-based setup, we aimed to transition
our builds to GitHub Actions. We re-engineered a
preliminary build pipeline based on GitHub Actions
that mimicked the build in Jenkins. In the process,
we identified further points of improvement, e.g. that
organization-internal internal dependencies could be
calculated dynamically, that new projects could be
included in the nightly build automatically, and that
builds could be done incrementally based on changes
in the repositories. Additionally, GitHub Actions’
reusable workflows provided us with the flexibility to
modularize different stages of our build, leading to
enhanced maintainability and reduced redundancy.

In this research paper, we share our reasons for the
migration, the benefits realized in continuous integra-
tion and deployment efficiency, and the implications
on sustainability and modularization. We present how
we use dependency analysis in Palladio to harness the
potential of modern automation platforms and drive
sustainable development practices. To that end, we
apply the idea of incremental builds to the whole or-
ganization, automatically generating build workflows
and reducing build executions.

2 Switching to GitHub Actions

The Palladio organization consists of over 50 projects
that need to be kept up to date by the nightly build.
To make all projects reflect the latest changes of their
dependencies, the nightly build workflow must build
the projects according to their complex dependency
relationship. The following sections describe issues
we encountered with the old build system, how our
updated system overcomes these issues and the new
infrastructure setup based on GitHub Actions.

2.1 Build Pipeline Stages

Previously, the build dependencies were declared man-
ually by editing the build definition. This time-
consuming and error-prone process made adding
projects to the nightly build hard and could result

https://www.jenkins.io/
https://docs.github.com/en/actions


Nightly Build Action

Nightly Update Action

GitHub
Repositories

Dependency
Analysis

Action
Template

Template
Engine

Generate

Build

Dispatch
WorkflowCheck

Dependency
State

Needs
Build

Yes

Figure 1: Overview of the new incremental CI/CD
pipeline for nightly builds in Palladio.

in missing, as well as redundant, dependencies. Miss-
ing dependencies did not only lead to build failures
because of version mismatches but made it difficult to
determine the origin of a failure since the build would
fail one iteration later, for example when the API of a
dependency changed. This is because the dependency
could be built and deployed after the project which
depends on it, and the changes would only be visible
in the next iteration. Redundant dependencies could
reduce the maximum concurrency of builds or even
break the build system if a cycle was introduced.

The updated system overcomes these issues by dy-
namically generating and maintaining the build def-
inition with minimal user intervention. An overview
is illustrated in Figure 1. A Nightly Update action
scans the organization periodically for new or changed
projects that are configured to be part of the nightly
build3. For those projects, the dependencies are calcu-
lated directly from the project files. Using an extensi-
ble template engine, the dependencies are then turned
into a GitHub workflow file for the Nightly Build ac-
tion. Each project is translated to a job in the work-
flow file, and the project dependencies are translated
to job dependencies. This way, GitHub automatically
orchestrates the builds such that all projects are built
in the correct order and concurrency is maximized.
An excerpt of the Palladio dependency graph as dis-
played in the GitHub Actions overview can be found
in Figure 2. If the definition changes, a Pull Request
is opened on the build repository and maintainers are
notified for a review of the changes.

Projects opt-in to the nightly build by simply pro-
viding a build workflow in their repository. If neces-
sary, additional projects and build steps can be added
manually using a template file. The Nightly Build ac-
tion dispatches the CI workflow of each repository by a
remote workflow script that waits for the workflow to
finish and mirrors the conclusion to the nightly build.
This keeps the build flexible and project-agnostic,
which is advantageous for project maintainers because
the build workflow can be updated and customized in-
dependently. Additionally, the workflow status on the
repository represents the build status after the last
dependency update rather than the status of the last

3https://github.com/PalladioSimulator/

Palladio-Build-DependencyTool

Figure 2: Excerpt of the dependency graph visual-
ization of GitHub for the Palladio organization.

push, and maintainers are notified about issues during
the nightly build.

2.2 Scalable Infrastructure Setup

GitHub

Self-hosted Server

bwCloud

github-runner-2

github-runner-3

github-runner-4

SFTP Server Palladio

Webserver Updatesite 
Palladio

Eclipse Artifacts 
Palladio

github-runner-1

GitHub-hosted runner

GitHub-hosted runner

Webserver Updatesite 
MDSD.tools

Eclipse Artifacts 
MDSD.toolsSFTP Server MDSD.tools

GitHub Actions 
Webservice

GitHub Actions 
Webservice

Client

Figure 3: Overview of the current CI/CD infrastruc-
ture for the Palladio organization.

Our previous setup was based on Jenkins and in-
tegrated into GitHub using webhooks [2]. While this
setup fulfilled our functional requirements of a build
system, it turned out to be unreliable in practice and
involved major management overhead. For example,
the Jenkins server and multiple build agents needed to
be kept up to date. Adding new repositories required
expertise in both Jenkins and GitHub to set up the
build plan and the required webhooks.

For the updated build system, the builds are or-
chestrated by the GitHub web service, as described in
Subsection 2.1. The builds themselves are executed
on shared runners managed by GitHub as well as self-
hosted runners which provide a minimum user inter-

https://github.com/PalladioSimulator/Palladio-Build-DependencyTool
https://github.com/PalladioSimulator/Palladio-Build-DependencyTool


face for GUI tests that are hosted on bwCloud4, an
IaaS platform for science and education. See Figure 3
for an overview of the new setup.

The build artifacts are deployed to a self-hosted
Eclipse updatesite5. The updatesite consists of a
database, an SFTP server, and a web server behind a
firewall, which are deployed using Docker containers.

Management overhead is reduced since GitHub
provides a highly available, reliable, and well-
documented platform that is easy to understand and
which developers can quickly familiarize themselves
with. A new project is integrated by adding a build
definition to the repository. We further simplify this
process by providing a reusable workflow for common
project layouts, which builds and deploys the project.
The reusable workflow provides a sensible default con-
figuration that can be overwritten by project main-
tainers, for example, to select the required runner by
label (GitHub or self-hosted) and Java version.

We make use of the tight integration of GitHub Ac-
tions with the platform by sharing secrets across the
organization, extensive use of user and rights manage-
ment as well as automated pull request reviews.

3 Incremental Build Schedule

The nightly build harnesses the potential of modern
automation platforms to keep the build sustainable by
using the dependency information not only to build
the projects in the correct order but also to deter-
mine if a build is necessary at all. Therefore, we ap-
ply the idea of incremental builds to the whole or-
ganization. A build can be skipped if none of the
dependencies were updated and the last build on the
repository started after the latest commit. As a build
is also dispatched after a push as part of most project-
specific CI/CD workflows, the latter is often already
the case. As a result, the build times, as well as re-
source consumption, are significantly reduced. Over-
all, this should lead to reduced energy consumption.

In the Palladio organization, we analyzed 24 reg-
ular nightly builds and 27 incremental nightly builds
after filtering outliers caused by infrastructure out-
ages. We were able to reduce the average build times
from 139.5 minutes down to 11.9 minutes, resulting
in an average speed-up in build times of 11.7. Fig-
ure 4 presents the distribution of workflow durations
for regular full builds compared to the described in-
cremental and more sustainable build schedule.

4 Conclusion

The migration from Jenkins to GitHub Actions for
our nightly builds addressed challenges with our pre-
vious setup and has proven to streamline our software
development workflows. We have observed improve-
ments in continuous integration, review processes, and

4https://www.bw-cloud.org
5https://updatesite.palladio-simulator.com/

Regular build Incremental build

0

25

50

75

100

125

150

175

Pipeline

W
o
rk
fl
ow

d
u
ra
ti
on

[m
in
]

Figure 4: Distribution of workflow durations for reg-
ular and incremental builds.

deployment efficiency, thanks to the seamless integra-
tion within the GitHub ecosystem. Our build pipeline
was optimized using GitHub Actions’ modular and
reusable workflows, leading to enhanced maintainabil-
ity and reduced redundancy in our projects.

By leveraging dependency analysis, we have further
unlocked the potential of modern automation plat-
forms, generating build workflows and reducing build
execution frequency. This data-driven approach has
not only improved resource utilization but also con-
tributed to sustainable development practices.

Throughout this process, we have also gained ad-
ditional valuable insights into the benefits of embrac-
ing GitHub Actions. With GitHub Actions, we have
found a robust and future-proof automation platform
that has met our expectations.

Acknowledgements

This publication is partially based on the research
project SofDCar (19S21002), which is funded by the
German Federal Ministry for Economic Affairs and
Climate Action. This work was also supported by the
Ministry of Science, Research and the Arts Baden-
Württemberg (Az: 7712.14-0821-2), and by fund-
ing from the pilot program Core Informatics of the
Helmholtz Association (HGF).

References

[1] R. H. Reussner et al., eds. Modeling and Simu-
lating Software Architectures – The Palladio Ap-
proach. MIT Press, 2016. 408 pp.

[2] S. Seifermann and S. Krach. “Catching Up
with State of the Art Continuous Integration
Pipelines in Palladio-An Experience Report.” In:
Softwaretechnik-Trends 40.3 (2020), pp. 52–54.

https://www.bw-cloud.org
https://updatesite.palladio-simulator.com/

	Introduction
	Switching to GitHub Actions
	Build Pipeline Stages
	Scalable Infrastructure Setup

	Incremental Build Schedule
	Conclusion

