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We present an improved implementation of SVGF that aims to 
achieve good denoising quality for combined high- and 
low-frequency content—for example, combined direct and 
indirect illumination—in highly dynamic scenes. Unlike A-SVGF, 
our approach avoids the added complexity of gradient 
computation, coherent sample spaces, and forward projection 
while maintaining robustness. Central to our method is a 
percentile-based outlier detection scheme that adaptively 
modulates the accumulation factor and also suppresses firefly 
artifacts in the input signal. Additionally, we present several 
modifications that significantly reduce artifacts, particularly in 
scenarios involving disocclusions and rapid camera motion and 
our approach for reprojecting volumes for denoising.

Percentile-based Adaptive Accumulation
To quickly react to lighting changes and reduce ghosting, the 
accumulation factor should adaptively be reduced in areas 
where the temporal information is outdated, i.e., the luminance 
in the temporal buffer differs a lot from the current input image.
For that, we compute user-defined luminance percentiles in 8x8 
pixel-blocks. This can be implemented efficiently using an 
odd-even sort in shared memory. We then compute a target 
accumulation factor using the formula

where lin, s, low, up, lum are the linear step function, a 
user-defined strength, the lower and upper percentiles of the 
current block, and the luminance from the accumulation buffer. 
The inter-percentile range IPR is computed as the difference of 
the lower and upper percentiles and is multiplied with a 
user-defined factor. The resulting accumulation factor α is not 
used directly; instead we reduce the history length variable 
according to history = min(1 / (1 - α) - 1, history). 
This increases the accumulation of new information in the 
following frames as well.

Percentile-based Firefly Filtering
To reduce flickering, we use a similar percentile-based 
approach to filter fireflies in the input image. According to

we compute a maximum luminance, which is used to clamp the 
samples in the input. We add a small bias to help in situations 
with sparse sampling. 

Variance Estimation
The original implementation employs a 3×3 pixel Gaussian blur 
to improve variance estimation. However, we observed that this 
introduces flickering and still fails to eliminate black artifacts 
caused by zero-variance estimates. To address this, we 
estimate variance over a larger 5×5 pixel neighborhood and 
adaptively reduce the spatial influence based on the temporal 
history length.

Reducing Artifacts
We found that artifacts caused by missing information after 
disocclusions were particularly distracting during rapid 
gameplay. To mitigate this, we reuse information from nearby 
pixels, which may introduce minor artifacts but are significantly 
less perceptually disruptive. For motion vectors pointing outside 
the image plane, we reuse the information at the border by 
intersecting the motion vector with the plane, resulting in more 
pleasing artifacts compared to clamping. If the reprojected 
pixel is discarded due to normal or depth differences, we extend 
the search radius to nearby pixels. To increase reuse in the 
filtering step, we modified the edge-avoiding functions to 
decrease their influence depending on the depth value of the 
current center pixel.

Volume Denoising
To improve the reprojection of volumetric effects—such as light 
shafts—and better account for parallax, we replace 
surface-based motion vectors with those derived from virtual 
points of high contribution within the volume, which are  
forward-projected into the current frame to compute motion 
vectors. While the points can be selected stochastically using a 
weighted mean based on transmittance sampling, we instead 
leverage data from our real-time distance guiding. Beyond this 
modification, we retain the base SVGF implementation but 
disable normal-based rejection and reduce the influence of 
depth values.

Performance and Memory Usage
Performance was measured on an AMD Radeon RX 7900 XTX 
at 1080p resolution. We run two instances of SVGF: one for 
surfaces and one for volumes. Each instance runs in around 1.05 
ms in total for 5 filter iterations and requires around 68 MB of 
temporary memory. In addition, the implementation needs 
access to the results and the G-Buffer from the previous frame, 
which amounts to around 117 MB.

     α = (1 - s · lin(up, up + IPR, lum))
       · (1 - s · (1 - lin(low - IPR, low, lum))),

max_lum = bias + up + IPR

Code:
github.com/LDAP/merian
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