
KIT – The Research University in the Helmholtz Association

Institute for Visualization and Data Analysis (IVD)

Percentile-based Adaptive Spatiotemporal
Variance-Guided Filtering for GI and Volumes
Lucas Domingo Alber

We present an improved implementation of SVGF that aims to
achieve good denoising quality for combined high- and
low-frequency content—for example, combined direct and
indirect illumination—in highly dynamic scenes. Unlike A-SVGF,
our approach avoids the added complexity of gradient
computation, coherent sample spaces, and forward projection
while maintaining robustness. Central to our method is a
percentile-based outlier detection scheme that adaptively
modulates the accumulation factor and also suppresses firefly
artifacts in the input signal. Additionally, we present several
modifications that significantly reduce artifacts, particularly in
scenarios involving disocclusions and rapid camera motion and
our approach for reprojecting volumes for denoising.

Percentile-based Adaptive Accumulation
To quickly react to lighting changes and reduce ghosting, the
accumulation factor should adaptively be reduced in areas
where the temporal information is outdated, i.e., the luminance
in the temporal buffer differs a lot from the current input image.
For that, we compute user-defined luminance percentiles in 8x8
pixel-blocks. This can be implemented efficiently using an
odd-even sort in shared memory. We then compute a target
accumulation factor using the formula

where lin, s, low, up, lum are the linear step function, a
user-defined strength, the lower and upper percentiles of the
current block, and the luminance from the accumulation buffer.
The inter-percentile range IPR is computed as the difference of
the lower and upper percentiles and is multiplied with a
user-defined factor. The resulting accumulation factor α is not
used directly; instead we reduce the history length variable
according to history = min(1 / (1 - α) - 1, history).
This increases the accumulation of new information in the
following frames as well.

Percentile-based Firefly Filtering
To reduce flickering, we use a similar percentile-based
approach to filter fireflies in the input image. According to

we compute a maximum luminance, which is used to clamp the
samples in the input. We add a small bias to help in situations
with sparse sampling.

Variance Estimation
The original implementation employs a 3×3 pixel Gaussian blur
to improve variance estimation. However, we observed that this
introduces flickering and still fails to eliminate black artifacts
caused by zero-variance estimates. To address this, we
estimate variance over a larger 5×5 pixel neighborhood and
adaptively reduce the spatial influence based on the temporal
history length.

Reducing Artifacts
We found that artifacts caused by missing information after
disocclusions were particularly distracting during rapid
gameplay. To mitigate this, we reuse information from nearby
pixels, which may introduce minor artifacts but are significantly
less perceptually disruptive. For motion vectors pointing outside
the image plane, we reuse the information at the border by
intersecting the motion vector with the plane, resulting in more
pleasing artifacts compared to clamping. If the reprojected
pixel is discarded due to normal or depth differences, we extend
the search radius to nearby pixels. To increase reuse in the
filtering step, we modified the edge-avoiding functions to
decrease their influence depending on the depth value of the
current center pixel.

Volume Denoising
To improve the reprojection of volumetric effects—such as light
shafts—and better account for parallax, we replace
surface-based motion vectors with those derived from virtual
points of high contribution within the volume, which are
forward-projected into the current frame to compute motion
vectors. While the points can be selected stochastically using a
weighted mean based on transmittance sampling, we instead
leverage data from our real-time distance guiding. Beyond this
modification, we retain the base SVGF implementation but
disable normal-based rejection and reduce the influence of
depth values.

Performance and Memory Usage
Performance was measured on an AMD Radeon RX 7900 XTX
at 1080p resolution. We run two instances of SVGF: one for
surfaces and one for volumes. Each instance runs in around 1.05
ms in total for 5 filter iterations and requires around 68 MB of
temporary memory. In addition, the implementation needs
access to the results and the G-Buffer from the previous frame,
which amounts to around 117 MB.

 α = (1 - s · lin(up, up + IPR, lum))
 · (1 - s · (1 - lin(low - IPR, low, lum))),

max_lum = bias + up + IPR

Code:
github.com/LDAP/merian

http://www.lalber.org
https://github.com/LDAP/merian

